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Abstract

Given an m × n matrix A and a positive integer k, we introduce a randomized
procedure for the approximation of A with a matrix Z of rank k. The procedure relies
on applying AT to a collection of l random vectors, where l is an integer equal to or
slightly greater than k; the scheme is efficient whenever A and AT can be applied rapidly
to arbitrary vectors. The discrepancy between A and Z is of the same order as the
(k+1)st greatest singular value σk+1 of A, with negligible probability of even moderately
large deviations. The actual estimates derived in the paper are fairly complicated, but
are simpler when l− k is a fixed small nonnegative integer. For example, according to
one of our estimates for l − k = 20, the probability that the spectral norm ‖A− Z‖ is
greater than 10

√
(k + 20) m σk+1 is less than 10−17. The paper contains a number of

estimates for ‖A−Z‖, including several that are stronger (but more detailed) than the
preceding example; some of the estimates are effectively independent of m. Thus, given
a matrix A of limited numerical rank, such that both A and AT can be applied rapidly
to arbitrary vectors, the scheme provides a simple, efficient means for constructing
an accurate approximation to a Singular Value Decomposition of A. Furthermore, the
algorithm presented here operates reliably independently of the structure of the matrix
A. The results are illustrated via several numerical examples.

1 Introduction

In many practical circumstances, it is desirable to approximate a matrix A with a sum of
rank-1 matrices. Such an approximation of A often facilitates understanding of the properties
of A. Moreover, if the approximation involves only a small number of rank-1 matrices, then
the approximation also facilitates rapid calculations involving A.

There are at least two classical forms of such matrix approximations. One is an ap-
proximation to a Singular Value Decomposition (SVD), which is known in the statistical
literature as a Principal Component Analysis. The other is an approximation obtained via
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subset selection; we will refer to the matrix representation obtained via subset selection as
an interpolative decomposition. These two types of matrix approximations are defined as
follows.

An approximation to an SVD of a real m × n matrix A consists of nonnegative real
numbers σ1, σ2, . . . , σk−1, σk known as singular values, orthonormal real m × 1 column
vectors u1, u2, . . . , uk−1, uk known as left singular vectors, and orthonormal real n × 1
column vectors v1, v2, . . . , vk−1, vk known as right singular vectors, such that∥∥∥∥∥A−

k∑
j=1

uj σj (vj)T

∥∥∥∥∥ ≤ δ, (1)

where k, m, and n are positive integers, δ is a positive real number specifying the precision
of the approximation, and, for any matrix B, ‖B‖ denotes the spectral (l2-operator) norm
of B, that is, ‖B‖ is the greatest singular value of B. An approximation to an SVD of A is
often written in the equivalent form∥∥A− U Σ V T

∥∥ ≤ δ, (2)

where U is a real m×k matrix whose columns are orthonormal, V is a real n×k matrix whose
columns are orthonormal, and Σ is a real k×k matrix whose entries are all nonnegative and
whose entries off of the main diagonal are zero. See, for example, [21] for a discussion of
SVDs.

An interpolative decomposition of a real m× n matrix A consists of a real m× k matrix
B whose columns constitute a subset of the columns of A, and a real k × n matrix P , such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2, and

3. A = B P .

See, for example, [20], [6], [16], [25], or Sections 4 and 5 of [4] for a discussion of interpolative
decompositions.

Given an algorithm permitting the fast application of a numerically low-rank matrix A,
and an algorithm permitting the fast application of AT, the algorithm of the present paper
provides a simple, efficient way for computing an accurate approximation to an SVD of A.
Moreover, the algorithm provides a similar method for computing an accurate approximation
to an interpolative decomposition of A under the same conditions.

Our scheme also provides an efficient, robust means for approximating the k greatest
singular values and corresponding singular vectors of any matrix A for which a representation
enabling the fast application of both A and AT is available. The precision δ of the resulting
approximation given by formula (2) is at most a reasonably small multiple of the (k +
1)st greatest singular value of A. In this regard, the algorithm described below should be
compared to the classical Lanczos method (for a description of the Lanczos method, see, for
example, Chapter 9 in [15]).
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Unlike the deterministic Lanczos scheme, the algorithm of the present paper is a ran-
domized one, and fails with a rather negligible probability. Examples of the probabilities
involved can be found in (103) and (115) in Section 4 below.

Some potential applications of the algorithm include finding the eigenmodes of certain
networks, mining digital documents for information via latent semantic analysis, computing
electron densities within the density functional theory of quantum chemistry, simplifying
the implementation of algorithms for fast matrix inversion that are based on the compres-
sion of blocks within matrices, and improving condition number estimation and subspace
determination algorithms that are based on inverse iteration.

We should point out that [19] and [4] motivated many aspects of the algorithm and
analysis of the present paper. We would also like to highlight [16], [25], [18], and [17],
which came to our attention after we had released the initial version of the present work.
Moreover, a number of recent publications address issues similar to those addressed by the
present paper; we refer the reader to [24] and [2], which describe deterministic methods,
and to [1], [7], [8], [9], [10], [11], [12], [13], [22], [23], and the extensive references contained
therein, all of which describe probabilistic Monte Carlo methods.

We do not analyze in detail the effects of round-off upon the algorithm of the present
paper. However, most of the bounds that we discuss have finite-precision analogues. This is
confirmed by both our preliminary analysis and our numerical experiments (some of which
are described in Section 5 below). For simplicity, we discuss only real matrices; the analysis
below extends easily to the complex case.

The present paper has the following structure: Section 2 collects together various known
facts which later sections utilize, Section 3 provides the principal lemmas which Section 4 uses
to construct algorithms, Section 4 describes the algorithm of the present paper, providing
details about its accuracy and computational costs, and Section 5 illustrates the algorithm
via several numerical examples.

2 Preliminaries from linear algebra and the theory of

probability

In this section, we summarize various facts about matrices. Subsection 2.1 discusses the
approximation of arbitrary matrices. Subsection 2.2 discusses the singular values of arbitrary
matrices. Subsection 2.3 discusses the singular values of certain random matrices.

In the present section and throughout the rest of the paper, we employ the following
notation. In accordance with the standard practice, we will denote the base of the natural
logarithm by e. We will denote an identity matrix by 1, and a matrix whose entries are all
zero by 0. For any matrix A, we define the norm ‖A‖ of A to be the spectral (l2-operator)
norm of A, that is, ‖A‖ is the greatest singular value of A. For any positive integer n, and
real n× 1 column vector v ∈ Rn, we define the norm ‖v‖ of v to be the root-sum-square (l2

norm) of the entries of v, that is,

‖v‖ =

√√√√ n∑
k=1

(vk)2, (3)
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where vk is the kth entry of v. (Of course, the norm of v as viewed as a real n× 1 matrix is
equal to the norm of v as viewed as a real n× 1 column vector.)

2.1 Approximation of general matrices

The following lemma states that, for any m× n matrix A whose rank is k, where k, m, and
n are positive integers, there exist an m× k matrix B whose columns constitute a subset of
the columns of A, and a k × n matrix P , such that

1. some subset of the columns of P makes up the k × k identity matrix,

2. P is not too large, and

3. B P = A.

Moreover, the lemma provides an analogous approximation B P to A when the exact rank
of A is not k, but the (k + 1)st singular value of A is nevertheless small. The lemma is a
reformulation of Theorem 3.2 in [20] and Theorem 3 in [6].

Lemma 1 Suppose that m and n are positive integers, and A is a real m× n matrix.
Then, for any positive integer k with k ≤ m and k ≤ n, there exist a real k × n matrix

P , and a real m× k matrix B whose columns constitute a subset of the columns of A, such
that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 1,

3. ‖P‖ ≤
√

k (n− k) + 1,

4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k + 1)st

greatest singular value of A.

Remark 2 Properties 1, 2, 3, and 4 in Lemma 1 ensure that the interpolative decomposition
B P of A is numerically stable. Also, Property 3 follows directly from Properties 1 and 2,
and Property 4 follows directly from Property 1.

Observation 3 There exists an algorithm which computes B and P in Lemma 1 from A,
provided that we require only that

1. some subset of the columns of P makes up the k × k identity matrix,

2. no entry of P has an absolute value greater than 2,

3. ‖P‖ ≤
√

4k (n− k) + 1,
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4. the least (that is, the kth greatest) singular value of P is at least 1,

5. B P = A when k = m or k = n, and

6. ‖B P −A‖ ≤
√

4k (n− k) + 1 σk+1 when k < m and k < n, where σk+1 is the (k +1)st

greatest singular value of A.

For any positive real number ε, the algorithm can identify the least k such that ‖B P−A‖ ≈ ε.
Furthermore, there exists a real number C such that the algorithm computes both B and
P using at most Ckmn log(n) floating-point operations and Ckmn floating-point words of
memory. The algorithm is based upon the Cramer rule and the ability to obtain the minimal-
norm (or at least roughly minimal-norm) solutions to linear algebraic systems of equations
(see [20], [6], and [19]).

The following lemma provides an approximation QS to an n× l matrix R via an n× k
matrix Q whose columns are orthonormal, and a k × l matrix S.

Lemma 4 Suppose that k, l, and n are positive integers with k < l and l ≤ n, and R is a
real n× l matrix.

Then, there exist a real n× k matrix Q whose columns are orthonormal, and a real k× l
matrix S, such that

‖QS −R‖ ≤ ρk+1, (4)

where ρk+1 is the (k + 1)st greatest singular value of R.

Proof. We start by forming an SVD of R,

R = U Σ V T, (5)

where U is a real n × l matrix whose columns are orthonormal, V is a real l × l matrix
whose columns are orthonormal, and Σ is a real l × l matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, such that

Σj,j = ρj (6)

for all j = 1, 2, . . . , l − 1, l, where Σj,j is the entry in row j and column j of Σ, and ρj is
the jth greatest singular value of R. We define Q to be the leftmost n × k block of U , and
P to be the rightmost n× (l − k) block of U , so that

U =
(

Q P
)
. (7)

We define S to be the uppermost k× l block of Σ V T, and T to be the lowermost (l− k)× l
block of Σ V T, so that

Σ V T =

(
S
T

)
. (8)

Combining (5), (6), (7), (8), and the fact that the columns of U are orthonormal, as are the
columns of V , yields (4). 2

Observation 5 In order to compute the matrices Q and S in (4) from the matrix R, we can
construct (5), and then form Q and S according to (7) and (8). (See, for example, Chapter 8
in [15] for details concerning the computation of the SVD.)

5



2.2 Singular values of general matrices

The following technical lemma will be needed in Section 3.

Lemma 6 Suppose that m and n are positive integers with m ≥ n. Suppose further that A
is a real m× n matrix such that AT A is invertible.

Then, ∥∥(AT A)−1 AT
∥∥ =

1

σn

, (9)

where σn is the least (that is, the nth greatest) singular value of A.

Proof. We form an SVD of A,
A = U Σ V T, (10)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n×n matrix. It follows
from (10) that

(AT A)−1 AT = V (ΣT Σ)−1 Σ UT. (11)

Combining (11) and the fact that U and V are unitary yields∥∥(AT A)−1 AT
∥∥ =

∥∥(ΣT Σ)−1 ΣT
∥∥ . (12)

Combining (12) and the fact that Σ is zero off of the main diagonal yields (9). 2

The following lemma provides what is known as the Courant-Fischer maximin character-
ization of singular values; Theorem 8.1.2 in [15] provides an equivalent formulation of (13).

Lemma 7 Suppose that m and n are positive integers, and A is a real m× n matrix.
Then, the kth greatest singular value σk of A is given by the formula

σk = max
S⊆Rn: dim S=k

min
v∈S: ‖v‖6=0

‖A v‖
‖v‖

(13)

for all k = 1, 2, . . . , min(m, n) − 1, min(m, n), where the maximum is taken over all k-
dimensional subspaces of Rn, and the minimum is taken over all vectors in S that have
nonzero norms.

The following lemma states that the singular values of the product G A of matrices G
and A are at most ‖G‖ times greater than the corresponding singular values of A.

Lemma 8 Suppose that l, m, and n are positive integers, A is a real m× n matrix, and G
is a real l ×m matrix.

Then, the kth greatest singular value ρk of the product G A is at most a factor of ‖G‖
times the kth greatest singular value σk of A, that is,

ρk ≤ ‖G‖σk (14)

for all k = 1, 2, . . . , min(l,m, n)− 1, min(l,m, n).
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Proof. For any vector v ∈ Rn with ‖v‖ 6= 0,

‖G A v‖
‖v‖

≤ ‖G‖ ‖A v‖
‖v‖

. (15)

Combining (13) and (15) yields (14). 2

The following lemma states that the greatest singular value of a matrix A is at least as
large as the greatest singular value of any rectangular block of entries in A; the lemma is a
straightforward consequence of the minimax properties of singular values (see, for example,
Section 47 of Chapter 2 in [26]).

Lemma 9 Suppose that k, l, m, and n are positive integers with k ≤ m and l ≤ n. Suppose
further that A is a real m× n matrix, and B is a k × l rectangular block of entries in A.

Then, the greatest singular value of B is at most the greatest singular value of A.

The following lemma states that the singular values of an (n − 1) × n block of rows of
an n × n matrix A interlace the singular values of A; Corollary 8.6.3 in [15] provides an
equivalent formulation of (16).

Lemma 10 Suppose that n is a positive real number, A is a real n× n matrix, and R is an
(n− 1)× n rectangular block of entries in A.

Then, the singular values σ1, σ2, . . . , σn−1, σn of A and the singular values ρ1, ρ2, . . . ,
ρn−2, ρn−1 of R satisfy the inequalities

σ1 ≥ ρ1 ≥ σ2 ≥ ρ2 ≥ . . . ≥ σn−2 ≥ ρn−2 ≥ σn−1 ≥ ρn−1 ≥ σn. (16)

The following lemma states that if the norm of the difference of two matrices is small, then
their corresponding singular values are close; Corollary 8.6.2 in [15] provides an equivalent
formulation of (17).

Lemma 11 Suppose that m and n are positive integers, and A and R are real m×n matrices.
Then, the kth greatest singular value τk of the sum A + R and the kth greatest singular

value σk of A differ by at most ‖R‖, that is,

|τk − σk| ≤ ‖R‖ (17)

for all k = 1, 2, . . . , min(m, n)− 1, min(m,n).

2.3 Singular values of random matrices

The following lemma provides a highly probable upper bound on the greatest singular value
of a square matrix whose entries are independent, identically distributed (i.i.d.) Gaussian
random variables of zero mean and unit variance; Formula 8.8 in [14] provides an equivalent
formulation of the lemma.
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Lemma 12 Suppose that n is a positive integer, G is a real n× n matrix whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, and γ is a positive real
number, such that γ > 1 and

1− 1

4 (γ2 − 1)
√

πnγ2

(
2γ2

eγ2−1

)n

(18)

is nonnegative.
Then, the greatest singular value of G is at most

√
2n γ with probability not less than the

amount in (18).

Combining Lemmas 9 and 12 yields the following lemma, providing a highly proba-
ble upper bound on the greatest singular value of a rectangular matrix whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance.

Lemma 13 Suppose that l, m, and n are positive integers with n ≥ l and n ≥ m. Suppose
further that G is a real l ×m matrix whose entries are i.i.d. Gaussian random variables of
zero mean and unit variance, and γ is a positive real number, such that γ > 1 and (18) is
nonnegative.

Then, the greatest singular value of G is at most
√

2n γ with probability not less than the
amount in (18).

The following lemma provides a highly probable lower bound on the least singular value
of a rectangular matrix whose entries are i.i.d. Gaussian random variables of zero mean and
unit variance; Formula 2.5 in [5] and the proof of Lemma 4.1 in [5] together provide an
equivalent formulation of Lemma 14.

Lemma 14 Suppose that k and l are positive integers with k ≤ l. Suppose further that G
is a real l × k matrix whose entries are i.i.d. Gaussian random variables of zero mean and
unit variance, and β is a positive real number, such that

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

(19)

is nonnegative.
Then, the least (that is, the kth greatest) singular value of G is at least 1/(

√
l β) with

probability not less than the amount in (19).

3 Mathematical apparatus

In this section, we describe the principal tools used in Section 4.
The following lemma states that the product B P of matrices B and P is a good approx-

imation to a matrix A, provided that there exists a matrix G such that

1. the columns of B constitute a subset of the columns of A,

2. ‖P‖ is not too large,
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3. G B P is a good approximation to G A, and

4. there exists a matrix F such that ‖F‖ is not too large, and F G A is a good approxi-
mation to A.

Lemma 15 Suppose that k, l, m, and n are positive integers with k ≤ n. Suppose further
that A is a real m×n matrix, B is a real m× k matrix whose columns constitute a subset of
the columns of A, P is a real k × n matrix, F is a real m× l matrix, and G is a real l ×m
matrix.

Then,
‖B P − A‖ ≤ ‖F G A− A‖ (‖P‖+ 1) + ‖F‖ ‖G B P −G A‖. (20)

Proof. We observe that

‖B P − A‖ ≤ ‖B P − F G B P‖+ ‖F G B P − F G A‖+ ‖F G A− A‖, (21)

‖B P − F G B P‖ ≤ ‖B − F G B‖ ‖P‖, (22)

and
‖F G B P − F G A‖ ≤ ‖F‖ ‖G B P −G A‖. (23)

Since the columns of B constitute a subset of the columns of A, it follows that the columns
of B − F G B constitute a subset of the columns of A− F G A, and therefore,

‖B − F G B‖ ≤ ‖A− F G A‖. (24)

Combining (21), (22), (23), and (24) yields (20). 2

Remark 16 Since the columns of B constitute a subset of the columns of A in Lemma 15,
it follows that the columns of G B constitute a subset of the columns of G A. Conversely,
whenever a matrix S is formed by gathering distinct columns of G A together into S, then
clearly S = G B for some matrix B whose columns constitute a subset of the columns of A.

The following lemma states that the product A QQT of matrices A, Q, and QT is a good
approximation to a matrix A, provided that there exist matrices G and S such that

1. the columns of Q are orthonormal,

2. QS is a good approximation to (G A)T, and

3. there exists a matrix F such that ‖F‖ is not too large, and F G A is a good approxi-
mation to A.

Lemma 17 Suppose that k, l, m, and n are positive integers with k ≤ n. Suppose further
that A is a real m× n matrix, Q is a real n× k matrix whose columns are orthonormal, S
is a real k × l matrix, F is a real m× l matrix, and G is a real l ×m matrix.

Then,
‖A QQT − A‖ ≤ 2 ‖F G A− A‖+ 2 ‖F‖ ‖QS − (G A)T‖. (25)

9



Proof. The proof is straightforward, but tedious, as follows.
We obtain from the triangle inequality that

‖A QQT − A‖ ≤ ‖A QQT − F G AQQT‖+ ‖F G AQQT − F G A‖+ ‖F G A− A‖. (26)

First, we provide a bound for ‖A QQT − F G AQQT‖. Clearly,

‖A QQT − F G AQQT‖ ≤ ‖A− F G A‖ ‖Q‖ ‖QT‖. (27)

It follows from the fact that the columns of Q are orthonormal that

‖Q‖ ≤ 1 (28)

and
‖QT‖ ≤ 1. (29)

Combining (27), (28), and (29) yields

‖A QQT − F G AQQT‖ ≤ ‖A− F G A‖. (30)

Next, we provide a bound for ‖F G AQQT − F G A‖. Clearly,

‖F G AQQT − F G A‖ ≤ ‖F‖ ‖G A QQT −G A‖. (31)

It follows from the triangle inequality that

‖G A QQT−G A‖ ≤ ‖G A QQT−ST QT QQT‖+‖ST QT QQT−ST QT‖+‖ST QT−G A‖.
(32)

Furthermore,

‖G A QQT − ST QT QQT‖ ≤ ‖G A− ST QT‖ ‖Q‖ ‖QT‖. (33)

Combining (33), (28), and (29) yields

‖G A QQT − ST QT QQT‖ ≤ ‖G A− ST QT‖. (34)

Also, it follows from the fact that the columns of Q are orthonormal that

QT Q = 1. (35)

It follows from (35) that
‖ST QT QQT − ST QT‖ = 0. (36)

Combining (32), (34), and (36) yields

‖G A QQT −G A‖ ≤ 2 ‖ST QT −G A‖. (37)

Combining (31) and (37) yields

‖F G AQQT − F G A‖ ≤ 2 ‖F‖ ‖ST QT −G A‖. (38)

Combining (26), (30), and (38) yields (25). 2

The following lemma states that, for any matrix A, and matrix G whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, with very high probability
there exists a matrix F with a reasonably small norm, such that F G A is a good approxi-
mation to A.
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Lemma 18 Suppose that k, l, m, and n are positive integers with k ≤ l, such that l < m
and l < n. Suppose further that A is a real m × n matrix, G is a real l ×m matrix whose
entries are i.i.d. Gaussian random variables of zero mean and unit variance, and β and γ
are positive real numbers, such that γ > 1 and

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

4 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

(39)

is nonnegative.
Then, there exists a real m× l matrix F such that

‖F G A− A‖ ≤
√

2lmβ2 γ2 + 1 σk+1 (40)

and
‖F‖ ≤

√
l β (41)

with probability not less than the amount in (39), where σk+1 is the (k+1)st greatest singular
value of A.

Proof. We prove the existence of a matrix F satisfying (40) and (41) by constructing one.
We start by forming an SVD of A,

A = U Σ V T, (42)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (43)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.

Next, we define auxiliary matrices H, R, and P . We define H to be the leftmost l × k
block of the l×m matrix G U , and R to be the rightmost l× (m− k) block of G U , so that

G U =
(

H R
)
. (44)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R. We
define H(−1) to be the real k × l matrix given by the formula

H(−1) = (HT H)−1 HT. (45)

We define P to be the m× l matrix whose uppermost k× l block is H(−1), and whose entries
in the lowermost (m− k)× l block are zero, so that

P =

(
H(−1)

0

)
. (46)
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Finally, we define F to be the m× l matrix given by

F = U P = U

(
H(−1)

0

)
. (47)

Combining (45), (9), the fact that the entries of H are i.i.d. Gaussian random variables
of zero mean and unit variance, and Lemma 14 yields∥∥H(−1)

∥∥ ≤ √
l β (48)

with probability not less than

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

. (49)

Combining (47), (48), and the fact that U is unitary yields (41).
We now show that F defined in (47) satisfies (40).
We define S to be the leftmost uppermost k × k block of Σ, and T to be the rightmost

lowermost (m− k)× (n− k) block of Σ, so that

Σ =

(
S 0
0 T

)
. (50)

Combining (42), (44), and (47) yields

F G A− A = U

((
H(−1)

0

) (
H R

)
− 1

)
Σ V T. (51)

Combining (45) and (50) yields((
H(−1)

0

) (
H R

)
− 1

)
Σ =

(
0 H(−1) R T
0 −T

)
. (52)

Furthermore, ∥∥∥∥(
0 H(−1) R T
0 −T

)∥∥∥∥2

≤
∥∥H(−1) R T

∥∥2
+ ‖T‖2. (53)

Moreover, ∥∥H(−1) R T
∥∥ ≤ ∥∥H(−1)

∥∥ ‖R‖ ‖T‖. (54)

Combining (50) and (43) yields
‖T‖ ≤ σk+1. (55)

Combining (51), (52), (53), (54), (55), and the fact that U and V are unitary yields

‖F G A− A‖ ≤
√
‖H(−1)‖2 ‖R‖2 + 1 σk+1. (56)

Combining Lemma 13 and the fact that the entries of R are i.i.d. Gaussian random
variables of zero mean and unit variance shows that

‖R‖ ≤
√

2m γ (57)

12



with probability not less than

1− 1

4 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

. (58)

Combining (56), (48), and (57) yields (40). 2

The following lemma is very similar to Lemma 18. Lemma 19 is tighter than Lemma 18
when the singular values of the matrix A decay sufficiently fast, and the numbers j and l in
the lemma are both much less than m.

Lemma 19 Suppose that j, k, l, m, and n are positive integers with k ≤ l, such that
k + j < m and k + j < n, as well as l < m and l < n. Suppose further that A is a real m×n
matrix, G is a real l ×m matrix whose entries are i.i.d. Gaussian random variables of zero
mean and unit variance, and β and γ are positive real numbers, such that γ > 1 and

Φ = 1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(j, l) γ2

(
2γ2

eγ2−1

)max(j, l)

(59)

is nonnegative.
Then, there exists a real m× l matrix F such that

‖F G A−A‖ ≤
√

2l max(j, l) β2 γ2 + 1 σk+1+
√

2l max(m− k − j, l) β2 γ2 + 1 σk+j+1 (60)

and
‖F‖ ≤

√
l β (61)

with probability not less than the amount in (59), where σk+1 is the (k+1)st greatest singular
value of A, and σk+j+1 is the (k + j + 1)st greatest singular value of A.

Proof. We prove the existence of a matrix F satisfying (60) and (61) by constructing one.
We start by forming an SVD of A,

A = U Σ V T, (62)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (63)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.
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Next, we define auxiliary matrices H, R, Γ, and P . We define H to be the leftmost l× k
block of the l × m matrix G U , R to be the l × j block of G U whose first column is the
(k + 1)st column of G U , and Γ to be the rightmost l × (m− j − k) block of G U , so that

G U =
(

H R Γ
)
. (64)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R, and
as are the entries of Γ. We define H(−1) to be the real k × l matrix given by the formula

H(−1) = (HT H)−1 HT. (65)

We define P to be the real m× l matrix whose uppermost k× l block is H(−1), whose entries
in the j × l block whose first row is the (k + 1)st row of P are zero, and whose entries in the
lowermost (m− k − j)× l block are zero, so that

P =

 H(−1)

0
0

 . (66)

Finally, we define F to be the m× l matrix given by

F = U P = U

 H(−1)

0
0

 . (67)

Combining (65), (9), the fact that the entries of H are i.i.d. Gaussian random variables
of zero mean and unit variance, and Lemma 14 yields∥∥H(−1)

∥∥ ≤ √
l β (68)

with probability not less than

1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

. (69)

Combining (67), (68), and the fact that U is unitary yields (61).
We now show that F defined in (67) satisfies (60).
We define S to be the leftmost uppermost k× k block of Σ, T to be the j × j block of Σ

whose leftmost uppermost entry is the entry in the (k + 1)st row and (k + 1)st column of Σ,
and Θ to be the rightmost lowermost (m− k − j)× (n− k − j) block of Σ, so that

Σ =

 S 0 0
0 T 0
0 0 Θ

 . (70)
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Combining (62), (64), and (67) yields

F G A− A = U

 H(−1)

0
0

 (
H R Γ

)
− 1

 Σ V T. (71)

Combining (65) and (70) yields H(−1)

0
0

 (
H R Γ

)
− 1

 Σ =

 0 H(−1) R T H(−1) Γ Θ
0 −T 0
0 0 −Θ

 . (72)

Furthermore,∥∥∥∥∥∥
 0 H(−1) R T H(−1) Γ Θ

0 −T 0
0 0 −Θ

∥∥∥∥∥∥
2

≤
∥∥H(−1) R T

∥∥2
+

∥∥H(−1) Γ Θ
∥∥2

+ ‖T‖2 + ‖Θ‖2. (73)

Moreover, ∥∥H(−1) R T
∥∥ ≤ ∥∥H(−1)

∥∥ ‖R‖ ‖T‖ (74)

and ∥∥H(−1) Γ Θ
∥∥ ≤ ∥∥H(−1)

∥∥ ‖Γ‖ ‖Θ‖. (75)

Combining (70) and (63) yields
‖T‖ ≤ σk+1 (76)

and
‖Θ‖ ≤ σk+j+1. (77)

Combining (71), (72), (73), (74), (75), (76), (77), and the fact that U and V are unitary
yields

‖F G A− A‖2 ≤
(∥∥H(−1)

∥∥2 ‖R‖2 + 1
)

(σk+1)
2 +

(∥∥H(−1)
∥∥2 ‖Γ‖2 + 1

)
(σk+j+1)

2. (78)

Combining Lemma 13 and the fact that the entries of R are i.i.d. Gaussian random
variables of zero mean and unit variance, as are the entries of Γ, yields

‖R‖ ≤
√

2 max(j, l) γ (79)

and
‖Γ‖ ≤

√
2 max(m− k − j, l) γ, (80)

with probability not less than

1− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(j, l) γ2

(
2γ2

eγ2−1

)max(j, l)

. (81)
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Combining (78), (68), (79), and (80) shows that

‖F G A−A‖2 ≤
(
2l max(j, l) β2 γ2 + 1

)
(σk+1)

2 +
(
2l max(m− k − j, l) β2 γ2 + 1

)
(σk+j+1)

2

(82)
with probability not less than the amount in (59). Combining (82) and the fact that

√
x + y ≤

√
x +

√
y (83)

for any nonnegative real numbers x and y yields (60). 2

Given an m × n matrix A, and a matrix G whose entries are i.i.d. Gaussian random
variables of zero mean and unit variance, the following lemma provides a highly probable
upper bound on the singular values of the product G A in terms of the singular values of
A; the lemma is most useful when the singular values of A decay sufficiently fast, and the
numbers j and l in the lemma are both much less than m.

Lemma 20 Suppose that j, k, l, m, and n are positive integers with k < l, such that
k + j < m and k + j < n. Suppose further that A is a real m× n matrix, G is a real l ×m
matrix whose entries are i.i.d. Gaussian random variables of zero mean and unit variance,
and γ is a positive real number, such that γ > 1 and

Ψ = 1− 1

4 (γ2 − 1)
√

π max(m− k − j, l) γ2

(
2γ2

eγ2−1

)max(m−k−j, l)

− 1

4 (γ2 − 1)
√

π max(k + j, l) γ2

(
2γ2

eγ2−1

)max(k+j, l)

(84)

is nonnegative.
Then, the (k + 1)st greatest singular value ρk+1 of G A is at most a certain linear combi-

nation of the (k +1)st greatest singular value σk+1 of A and the (k + j +1)st greatest singular
value σk+j+1 of A, namely,

ρk+1 ≤
√

2 max(k + j, l) γ σk+1 +
√

2 max(m− k − j, l) γ σk+j+1, (85)

with probability not less than the amount in (84).

Proof. We start by forming an SVD of A,

A = U Σ V T, (86)

where U is a real unitary m×m matrix, Σ is a real m×n matrix whose entries are nonnegative
everywhere and zero off of the main diagonal, and V is a real unitary n × n matrix, such
that

Σi,i = σi (87)

for all i = 1, 2, . . . , min(m, n)− 1, min(m, n), where Σi,i is the entry in row i and column i
of Σ, and σi is the ith greatest singular value of A.
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Combining (86) and the fact that V is unitary yields that G A has the same singular
values as G U Σ.

Next, we define auxiliary matrices H and R. We define H to be the leftmost l × (k + j)
block of the l ×m matrix G U , and R to be the rightmost l × (m− k − j) block of G U , so
that

G U =
(

H R
)
. (88)

Combining the facts that U is real and unitary, and that the entries of G are i.i.d. Gaussian
random variables of zero mean and unit variance, we see that the entries of H are also
i.i.d. Gaussian random variables of zero mean and unit variance, as are the entries of R.

Combining (88) and the fact that G A has the same singular values as G U Σ yields that
G A has the same singular values as

(
H 0

)
Σ +

(
0 R

)
Σ.

It follows from (87) that ∥∥(
0 R

)
Σ

∥∥ ≤ ‖R‖σk+j+1. (89)

Combining (17) and (89) yields

ρk+1 ≤ τk+1 + ‖R‖σk+j+1, (90)

where ρk+1 is the (k + 1)st greatest singular value of
(

H 0
)

Σ +
(

0 R
)

Σ, and τk+1 is
the (k+1)st greatest singular value of

(
H 0

)
Σ; ρk+1 is also the (k+1)st greatest singular

value of G A, since G A has the same singular values as
(

H 0
)

Σ +
(

0 R
)

Σ.
Furthermore, ∥∥(

H 0
)∥∥ ≤ ‖H‖. (91)

Combining (14), (91), and (87) yields

τk+1 ≤ ‖H‖σk+1. (92)

Combining Lemma 13 and the fact that the entries of H are i.i.d. Gaussian random
variables of zero mean and unit variance, as are the entries of R, shows that

‖H‖ ≤
√

2 max(k + j, l) γ (93)

and
‖R‖ ≤

√
2 max(m− k − j, l) γ (94)

with probability not less than the amount in (84).
Combining (90), (92), (93), and (94) yields (85). 2

4 Description of the algorithm

In this section, we describe the algorithm of the present paper. In Subsection 4.1, we discuss
approximations to interpolative decompositions. In Subsection 4.2, we discuss approxima-
tions to SVDs. In Subsection 4.3, we tabulate the computational costs of various parts of
the algorithm. In Subsection 4.4, we describe Table 1.
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4.1 Interpolative decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will collect together k appropriately chosen columns of A into
a real m× k matrix B, and construct a real k × n matrix P , such that

‖P‖ ≤
√

4k (n− k) + 1 (95)

and
‖B P − A‖ . σk+1, (96)

where σk+1 is the (k + 1)st greatest singular value of A. To do so, we select an integer l with
l > k, such that l < m and l < n (l = k + 20 is often a suitable choice), and make the
following three steps:

1. Using a random number generator, form a real l × m matrix G whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, and compute the
l × n product matrix

R = G A. (97)

2. Using the algorithm of [6], form a real l×k matrix S whose columns constitute a subset
of the columns of R, and a real k × n matrix P satisfying (95), such that

‖S P −R‖ ≤
√

4k (n− k) + 1 ρk+1, (98)

where ρk+1 is the (k + 1)st greatest singular value of R. (See Observation 3 for a brief
discussion of the properties of the algorithm of [6].)

3. Using the fact that the columns of S constitute a subset of the columns of R, for any
j = 1, 2, . . . , k− 1, k, let ij denote an integer such that the jth column of S is the ij

th

column of R. Form the real m× k matrix B whose jth column is the ij
th column of A

for all j = 1, 2, . . . , k − 1, k.

The matrices B and P obtained via the preceding three steps satisfy (95) and (96); see the
following observation.

Observation 21 It is easy to see that the matrices B and P satisfy (96). Indeed, combin-
ing (97) and Remark 16 yields

S = G B. (99)

Combining (98), (97), and (99) yields

‖G B P −G A‖ ≤
√

4k (n− k) + 1 ρk+1, (100)

where ρk+1 is the (k + 1)st greatest singular value of R. Suppose that β and γ are positive
real numbers such that γ > 1 and

χ = 1− 1√
2π (l − k + 1)

(
e

(l − k + 1) β

)l−k+1

− 1

2 (γ2 − 1)
√

πmγ2

(
2γ2

eγ2−1

)m

(101)
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is nonnegative. Then, combining (20), (40), (41), (95), (100), (14), (97), and Lemma 13
yields

‖B P − A‖

≤
(√

2lmβ2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2lm
√

4k (n− k) + 1
)

σk+1 (102)

with probability not less than χ defined in (101), where σk+1 is the (k+1)st greatest singular
value of A. The bound (102) is a precise version of (96). For example, choosing β = 3/4,
γ2 = 5, and l = k + 20, and combining (102) and (101), we obtain

‖B P − A‖ ≤ 10
√

k (k + 20) mn σk+1 (103)

with probability not less than 1− 10−17. Table 1 contains similar results obtained by taking
other values for l − k, β, and γ.

Observation 22 When the singular values of A decay sufficiently fast, and l is much less
than m, the factors

√
2lmβ2 γ2 + 1 and

√
2lm in (102) are much larger than necessary.

Indeed, suppose that j is a positive integer with k + j < m and k + j < n, and β and γ are
positive real numbers, such that γ > 1 and Φ + Ψ > 1, where Φ is defined in (59), and Ψ is
defined in (84). Then, combining (20), (60), (61), (95), (100), (85), and (97) yields

‖B P − A‖ ≤ ξ σk+1 + η σk+j+1 (104)

with probability not less than Φ + Ψ − 1, where Φ is defined in (59), Ψ is defined in (84),
σk+1 is the (k + 1)st greatest singular value of A, and σk+j+1 is the (k + j + 1)st greatest
singular value of A, and where

ξ =
√

2l max(j, l) β2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2l max(k + j, l)
√

4k (n− k) + 1 (105)

and

η =
√

2l max(m− k − j, l) β2 γ2 + 1
(√

4k (n− k) + 1 + 1
)

+ β γ
√

2l max(m− k − j, l)
√

4k (n− k) + 1. (106)

When j, k, and l are all much less than m, clearly ξ is much less than η. In many practical
situations, ξ σk+1 is greater than η σk+j+1, so that the right-hand side of (104) is effectively
independent of m.

Remark 23 If we choose l = k in the algorithm of the present subsection (instead of
choosing l > k), then we must replace (98) with the formula

‖S P −R‖ = 0. (107)

All other aspects of the algorithm stay the same in the case that l = k. In particular, (102)
and (104) hold in the case that l = k, too.
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4.2 Singular Value Decomposition

Suppose that k, m, and n are positive integers with k < m and k < n, and A is a real m×n
matrix. In this subsection, we will construct an approximation to an SVD of A such that

‖U Σ V T − A‖ . σk+1, (108)

where U is a real m × k matrix whose columns are orthonormal, V is a real n × k matrix
whose columns are orthonormal, Σ is a diagonal real k × k matrix whose entries are all
nonnegative, and σk+1 is the (k + 1)st greatest singular value of A. To do so, we select an
integer l with l > k, such that l < m and l < n (l = k + 20 is often a suitable choice), and
make the following five steps:

1. Using a random number generator, form a real l × m matrix G whose entries are
i.i.d. Gaussian random variables of zero mean and unit variance, and compute the
l × n product matrix

R = G A. (109)

2. Using an SVD, form a real n× k matrix Q whose columns are orthonormal, such that
there exists a real k × l matrix S for which

‖QS −RT‖ ≤ ρk+1, (110)

where ρk+1 is the (k + 1)st greatest singular value of R. (See Observation 5 for details
concerning the construction of such a matrix Q.)

3. Compute the m× k product matrix

T = A Q. (111)

4. Form an SVD of T ,
T = U Σ WT, (112)

where U is a real m × k matrix whose columns are orthonormal, W is a real k × k
matrix whose columns are orthonormal, and Σ is a real k× k matrix whose entries are
all nonnegative and zero off of the main diagonal. (See, for example, Chapter 8 in [15]
for details concerning the construction of such an SVD.)

5. Compute the n× k product matrix

V = QW. (113)

The matrices U , Σ, and V obtained via the preceding five steps satisfy (108); see the following
observation.

Observation 24 It is easy to see that the matrices U , Σ, and V satisfy (108). Indeed,
suppose that β and γ are positive real numbers such that γ > 1 and χ defined in (101) is

20



nonnegative. Then, combining (25), (40), (41), (111), (112), (113), (110), (14), (109), and
Lemma 13 yields

‖U Σ V T − A‖ ≤
(
2
√

2lmβ2 γ2 + 1 + 2
√

2lm β γ
)

σk+1 (114)

with probability not less than χ defined in (101), where σk+1 is the (k+1)st greatest singular
value of A. The bound (114) is a precise version of (108). For example, choosing β = 3/4,
γ2 = 5, and l = k + 20, and combining (114) and (101), we obtain

‖U Σ V T − A‖ ≤ 10
√

(k + 20) m σk+1 (115)

with probability not less than 1− 10−17. Table 1 contains similar results obtained by taking
other values for l − k, β, and γ.

Observation 25 When the singular values of A decay sufficiently fast, and l is much less
than m, the factors

√
2lmβ2 γ2 + 1 and

√
2lm in (114) are much larger than necessary.

Indeed, suppose that j is a positive integer with k + j < m and k + j < n, and β and γ are
positive real numbers, such that γ > 1 and Φ + Ψ > 1, where Φ is defined in (59), and Ψ is
defined in (84). Then, combining (25), (60), (61), (111), (112), (113), (110), (85), and (109)
yields

‖U Σ V T − A‖ ≤ ξ σk+1 + η σk+j+1 (116)

with probability not less than Φ + Ψ − 1, where Φ is defined in (59), Ψ is defined in (84),
σk+1 is the (k + 1)st greatest singular value of A, and σk+j+1 is the (k + j + 1)st greatest
singular value of A, and where

ξ = 2
√

2l max(j, l) β2 γ2 + 1 + 2
√

2l max(k + j, l) β γ (117)

and
η = 2

√
2l max(m− k − j, l) β2 γ2 + 1 + 2

√
2l max(m− k − j, l) β γ. (118)

When j, k, and l are all much less than m, clearly ξ is much less than η. In many practical
situations, ξ σk+1 is greater than η σk+j+1, so that the right-hand side of (116) is effectively
independent of m.

Remark 26 If we choose l = k in the algorithm of the present subsection (instead of
choosing l > k), then we must replace (110) with the formula

‖QS −RT‖ = 0. (119)

All other aspects of the algorithm stay the same in the case that l = k. In particular, (114)
and (116) hold in the case that l = k, too.

4.3 CPU time and memory requirements

In this subsection, we tabulate the numbers of floating-point operations and words of memory
required by the algorithms described in Subsections 4.1 and 4.2, as applied once to a matrix
A.
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4.3.1 Interpolative decomposition

The algorithm described in Subsection 4.1 incurs the following costs in order to compute an
approximation to an interpolative decomposition of A:

1. Forming R in (97) requires applying AT to l vectors.

2. Computing S and P in (98) or (107) costs O(lkn log(n)).

3. Forming B in (99) requires applying A to k vectors, where each vector has a single
entry of 1 and n− 1 entries of 0.

Summing up the costs in Steps 1–3 above, we conclude that the algorithm of Subsection 4.1
costs

CID = k · CA + l · CAT +O(lkn log(n)), (120)

where CA is the cost of applying A to a real n × 1 column vector, and CAT is the cost of
applying AT to a real m× 1 column vector.

4.3.2 Singular Value Decomposition

The algorithm described in Subsection 4.2 incurs the following costs in order to compute an
approximation to an SVD of A:

1. Forming R in (109) requires applying AT to l vectors.

2. Computing Q in (110) or (119) costs O(l2 n).

3. Forming T in (111) requires applying A to k vectors.

4. Computing the SVD (112) of T costs O(k2 m).

5. Forming V in (113) costs O(k2 n).

Summing up the costs in Steps 1–5 above, we conclude that the algorithm of Subsection 4.2
costs

CSVD = k · CA + l · CAT +O(k2 m + l2 n), (121)

where CA is the cost of applying A to a real n × 1 column vector, and CAT is the cost of
applying AT to a real m× 1 column vector.

Remark 27 We observe that the algorithm of the present paper only requires applying A
to k vectors and AT to l vectors; it does not require explicit access to the individual entries
of A. This consideration can be important when the entries of A are not available explicitly,
but instead A and AT are available solely in the form of procedures for their applications
to arbitrary vectors. Often such procedures for applying A and AT cost much less than the
standard procedure for applying a dense matrix to a vector.

Remark 28 Without any further analysis, we can observe that the cost in (120) of apply-
ing the algorithm of Subsection 4.1 to any m × n matrix A is in principle less than the
O(kmn log(n)) cost of using the algorithm discussed in Observation 3 directly on A, pro-
vided that l is sufficiently less than k log(n), and that both m and n are much greater than
both k and l.
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4.4 Description of Table 1

Tables 1.1–1.6 provide an upper bound Πl−k,β,γ on the probability that

‖U Σ V T − A‖ > ζ
√

lm σk+1, (122)

where U , Σ, and V are the matrices in the approximation to an SVD of the m×n matrix A
in (114). In (122), k and l are any positive integers with k ≤ l, such that l < m and l < n,
σk+1 is the (k + 1)st greatest singular value of A, and ζ takes on the values specified by the
penultimate columns of the tables. The quantity Πl−k,β,γ is defined by the formula

Πl−k,β,γ = 1− χ, (123)

where χ is defined in (101), and l − k, β, and γ take on the values specified by the first,
second, and third columns of the tables. The quantity ζ is specified by β and γ via (114).
Please note that Πl−k,β,γ depends only on l − k, β, and γ, and provides an upper bound
that is otherwise independent of k, m, n, and A; (115) provides a similar bound. When the
singular values of A decay sufficiently fast, and l is much less than m, the factor of

√
m in

the right-hand side of (122) is larger than necessary; see Observation 25 above.

Remark 29 Due to (102), the quantity Πl−k,β,γ defined in (123) also provides an upper
bound on the probability that

‖B P − A‖ > ζ
√

klmn σk+1, (124)

where B and P are the matrices in the approximation to an interpolative decomposition of
the m× n matrix A in (102).

5 Numerical results

In this section, we describe the results of five numerical tests of the algorithm of the present
paper. Table 2 summarizes the numerical output of the examples described in the present
section.

Tables 2.1–2.5 display the results of applying the algorithm of the present paper once
to a real n × n matrix A, for the indicated values of n. The matrix A is defined at the
end of the present section. The numbers k and l are those from Section 4; k is the rank
of the approximations to A, and l is the number of rows in the matrix G whose entries
are i.i.d. Gaussian random variables of zero mean and unit variance (the algorithm uses the
product G A). The displayed times refer to the seconds of CPU time used by the algorithm to
compute both the approximation to an interpolative decomposition and the approximation
to an SVD of A. (Please note that our implementation is optimized for accuracy and for
analyzing the numerical properties of the algorithm, and is probably not very efficient.) The
numbers σk and σk+1 are those from the definition of A below; furthermore, σk+1 appears in
the bounds (102) and (114) on the errors of the approximations. The number δID is the norm
of the difference between A and an approximation B P to an interpolative decomposition of
A, that is,

δID = ‖B P − A‖, (125)
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where the matrices B and P are those from (102). The number δSVD is the norm of the
difference between A and the approximation U Σ V T to an SVD of A, that is,

δSVD = ‖U Σ V T − A‖, (126)

where the matrices U , Σ, and V are those from (114).
We define δrel. max. as follows. First, we define auxiliary vectors t1, t2, . . . , tj−1, tj, and

τ 1, τ 2, . . . , τ j−1, τ j, where j = 30 in Examples 1 and 2, j = 90 in Example 3, j = 6 in
Example 4, and j = 5 in Example 5. We choose the test vectors t1, t2, . . . , tj−1, tj to include
a variety of deterministic and random vectors (specifically, we set every entry of t1 to be
1, and use a random number generator to generate t2, t3, . . . , tj−1, tj so that their entries
are i.i.d. Gaussian random variables of zero mean and unit variance). For any i = 1, 2, . . . ,
j−1, j, we define τ i to be the vector resulting from the application of B P −A to ti, that is,

τ i = (B P − A) ti, (127)

where the matrices B and P are those from (102). Then, we define δrel.max. via the formula

δrel. max. = max
i=1,2,...,j−1,j

(
maxp=1,2,...,m−1,m |(τ i)p|
maxq=1,2,...,n−1,n |(ti)q|

)
, (128)

where (τ i)p is the pth entry of τ i, and (ti)q is the qth entry of ti.
All estimates displayed in Table 2 are the maximum values obtained from three indepen-

dent realizations of the random variables involved.
The values of δID and δSVD displayed in Tables 2.2, 2.3, 2.4, and 2.5 are those obtained via

the power method for estimating the norm of a matrix, after the estimates stabilized to three
significant figures. The values of δID and δSVD displayed in Table 2.1 are those obtained after
100 iterations of the power method. The estimates of δID and δSVD summarized in Table 2.1
did not stabilize to three significant figures after 100 (or any other number of) iterations,
undoubtedly due to round-off.

We performed all computations using IEEE standard double-precision variables, whose
mantissas have approximately one bit of precision less than 16 digits (so that the relative
precision of the variables is approximately .2e-15). We ran all computations on a 2.8 GHz
Pentium Xeon microprocessor with 512 KB of L2 cache and 2 GB of RAM. We compiled the
Fortran 77 code using the Lahey-Fujitsu compiler, with the optimization flag --o2 enabled.

In our implementation, we computed SVDs using 2-sided plane (Jacobi/Givens) rota-
tions (see, for example, Chapter 8 in [15]). We used an algorithm based upon pivoted “QR”
decompositions to compute the matrices S and P in (98) and (107) (see, for example, Chap-
ter 5 in [15] for a description of “QR” decompositions, and [6] for further details regarding
our particular implementation).

In Examples 1, 2, and 3, we use a pseudorandom number generator to construct real
n × 1 vectors µ1, µ2, . . . , µj−1, µj, and ν1, ν2, . . . , νj−1, νj, such that their entries are a
realization of i.i.d. Gaussian random variables of zero mean and unit variance, with j = 20
in Examples 1 and 2, and j = 60 in Example 3. We orthonormalize µ1, µ2, . . . , µj−1, µj

via the Gram-Schmidt process with reorthogonalization (see, for example, [3]) to obtain real
n × 1 vectors u1, u2, . . . , uj−1, uj, and do the same with ν1, ν2, . . . , νj−1, νj to obtain
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real n × 1 vectors v1, v2, . . . , vj−1, vj. We denote by σ1, σ2, . . . , σj−1, σj the positive real
numbers displayed in Figure 1 (we use the numbers in Figure 1.1 for Example 1, the numbers
in Figure 1.2 for Example 2, and those in Figure 1.3 for Example 3). We define A to be the
n× n matrix given by the formula

A =

j∑
i=1

ui σi (vi)T. (129)

Clearly, the rank of A is j. Since u1, u2, . . . , uj−1, uj are orthonormal, as are v1, v2, . . . ,
vj−1, vj, the ith singular value of A is σi, for all i = 1, 2, . . . , j − 1, j. Table 2 displays the
results of applying the algorithm of the present paper to A, for various values of n (Table 2.1
displays the results for Example 1, Table 2.2 displays the results for Example 2, and Table 2.3
displays those for Example 3).

Example 4 is designed to illustrate that factors of the order of
√

4k (n− k) + 1 are
necessary in bounds such as (102) and (104). This example is identical to Examples 1, 2,
and 3, using the same matrix A defined in (129), but with n assumed to be divisible by 8,
with j = 4, and using the numbers σ1, σ2, σ3, and σ4 displayed in Figure 1.4 (σ1 = 1, σ2 = 1,
σ3 = .1e-7, and σ4 = .1e-7), and with the following vectors u1, u2, u3, u4, and v1, v2, v3, v4:

(u1)T =
1√
n

(
1 1 . . . 1 1

)
, (130)

(u2)T =
1√
n

(
1 −1 1 −1 . . . 1 −1 1 −1

)
, (131)

(u3)T =
1√
n

(
1 1 −1 −1 1 1 −1 −1 . . . 1 1 −1 −1 1 1 −1 −1

)
,

(132)

(u4)T =
1√
n

(
1 1 1 1 −1 −1 −1 −1 . . . 1 1 1 1 −1 −1 −1 −1

)
,

(133)

(v1)T =
1√

n− 1

(
1 1 . . . 1 1 1 0

)
, (134)

(v2)T =
(

0 0 . . . 0 0 0 1
)
, (135)

(v3)T =
1√

n− 2

(
1 −1 1 −1 . . . 1 −1 1 −1 0 0

)
, (136)

(v4)T =
1√
2

(
1 0 −1 0 0 0 . . . 0 0

)
, (137)

that is,

1. (a) every entry of u1 is 1/
√

n,

(b) entries 1, 2, . . . , n− 2, n− 1 of v1 are 1/
√

n− 1, and entry n of v1 is 0,

2. (a) every even entry of u2 is −1/
√

n, and every odd entry of u2 is 1/
√

n,

(b) entries 1, 2, . . . , n− 2, n− 1 of v2 are 0, and entry n of v2 is 1,
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3. (a) the first pair of entries of u3 is 1/
√

n, the second pair of entries is −1/
√

n, the
third pair of entries is 1/

√
n, the fourth pair of entries is −1/

√
n, and so on (with

each successive pair of entries alternating sign),

(b) every even entry of v3 except for entry n is −1/
√

n− 2, every odd entry of v3

except for entry n− 1 is 1/
√

n− 2, and entries n− 1 and n of v3 are 0,

4. (a) the first quadruplet of entries of u4 is 1/
√

n, the second quadruplet of entries is
−1/

√
n, the third quadruplet of entries is 1/

√
n, the fourth quadruplet of entries

is −1/
√

n, and so on (with each successive quadruplet of entries alternating sign),
and

(b) entry 1 of v4 is 1/
√

2, entry 2 of v4 is 0, entry 3 is −1/
√

2, and entries 4, 5, . . . ,
n− 1, n are 0.

For this example (Example 4),

u1 σ1 (v1)T + u2 σ2 (v2)T =
1√

n (n− 1)



1 1 · · · 1 1
√

n− 1
1 1 · · · 1 1 −

√
n− 1

1 1 · · · 1 1
√

n− 1
1 1 · · · 1 1 −

√
n− 1

...
...

...
...
...

...
...

...
1 1 · · · 1 1

√
n− 1

1 1 · · · 1 1 −
√

n− 1


. (138)

Clearly, u1, u2, u3, and u4 are orthonormal, as are v1, v2, v3, and v4. Therefore, the ith

singular value of A is σi, for all i = 1, 2, 3, 4. Table 2.4 displays the results of applying the
algorithm of the present paper to A, for various values of n.

Example 5 is designed to illustrate that factors of the order of
√

m are necessary in
bounds such as (102) and (114). In this example, we define A to be the n× n matrix given
by the formula

A = u vT + σ 1, (139)

where σ = .1e-6, and u and v are the real n× 1 column vectors given by the formulae

uT =
(

1 0 0 . . . 0 0
)

(140)

and

vT =
1√
n

(
1 1 . . . 1 1

)
. (141)

It follows from (16) that the kth greatest singular value σk of A is equal to .1e-6 for k = 2, 3,
. . . , n − 2, n − 1. Table 2.5 displays the results of applying the algorithm of the present
paper to A, for various values of n.

Remark 30 All numerical data that we have examined — including the data displayed in
Table 2, as well as the data from further experiments — appear to satisfy the bounds (102),
(104), (114), and (116). The loss of precision displayed in Table 2.1 as n increases is probably
largely due to round-off (compare Table 2.2), whereas the loss of precision in δID displayed
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in Table 2.4 as n increases suggests that any bounds such as (102) and (104) must contain
factors of the order of

√
4k (n− k) + 1. The loss of precision displayed in Table 2.5 as n

increases suggests that any bounds such as (102) and (114) must contain factors of the order
of
√

m. In contrast, in many practical situations the bounds mentioned in Observations 22
and 25 are effectively independent of m.
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l − k β γ2 ζ Πl−k,β,γ

0 10 3 102 .15e-0
0 88 4 103 .18e-1
0 790 5 104 .21e-2
0 6,600 7 105 .18e-3
0 58,000 9 106 .19e-4

(1.1)

l − k β γ2 ζ Πl−k,β,γ

1 7.9 5 102 .85e-2
1 72 6 103 .11e-3
1 620 8 104 .15e-5
1 5,500 10 105 .17e-7
1 53,000 11 106 .19e-9

(1.2)

l − k β γ2 ζ Πl−k,β,γ

2 7.9 5 102 .37e-3
2 66 7 103 .61e-6
2 589 9 104 .85e-9
2 5,300 11 105 .12e-11
2 51,000 12 106 .14e-14

(1.3)

l − k β γ2 ζ Πl−k,β,γ

2 1.02 3 10 .18e-0
4 0.88 4 10 .16e-1
8 0.88 4 10 .10e-4
16 0.79 5 10 .16e-12
32 0.72 6 10 .59e-32

(1.4)

l − k β γ2 ζ Πl−k,β,γ

0 10 3 100 .15e-0
1 7.9 5 100 .85e-2
2 7.9 5 100 .37e-3
4 7.2 6 100 .44e-6
8 6.6 7 100 .12e-12
16 6.6 7 100 .55e-28
32 6.2 8 100 .83e-63

(1.5)

l − k β γ2 ζ Πl−k,β,γ

0 10 3 1,000 .18e-1
1 72 6 1,000 .11e-3
2 66 7 1,000 .61e-6
4 62 8 1,000 .93e-11
8 58 9 1,000 .37e-21
16 55 10 1,000 .73e-44
32 53 11 1,000 .14e-93

(1.6)

Table 1 (See Subsection 4.4.)
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k l n time (sec.) σk σk+1 δrel. max. δID δSVD

10 10 102 .11e-02 .232e-15 .200e-15 .162e-14 .533e-14 .200e-14
10 10 103 .90e-02 .232e-15 .200e-15 .623e-14 .595e-14 .758e-14
10 10 104 .13e-00 .232e-15 .200e-15 .140e-13 .308e-13 .271e-13
10 10 105 .18e+01 .232e-15 .200e-15 .268e-13 .444e-13 .113e-12
10 10 106 .17e+02 .232e-15 .200e-15 .563e-13 .932e-13 .200e-11

(2.1)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

10 10 102 .11e-02 .152e-07 .100e-07 .139e-06 .156e-06 .982e-07
10 10 103 .10e-01 .152e-07 .100e-07 .734e-07 .159e-06 .927e-07
10 10 104 .13e-00 .152e-07 .100e-07 .213e-06 .240e-06 .190e-06
10 10 105 .19e+01 .152e-07 .100e-07 .102e-06 .239e-06 .154e-06
10 10 106 .18e+02 .152e-07 .100e-07 .110e-06 .195e-06 .135e-06

(2.2)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

30 30 50,000 .68e+01 .206e-08 .100e-08 .203e-07 .482e-07 .323e-07
30 31 50,000 .68e+01 .206e-08 .100e-08 .175e-07 .366e-07 .228e-07
30 32 50,000 .70e+01 .206e-08 .100e-08 .155e-07 .304e-07 .188e-07
30 34 50,000 .76e+01 .206e-08 .100e-08 .107e-07 .180e-07 .119e-07
30 38 50,000 .80e+01 .206e-08 .100e-08 .148e-07 .144e-07 .817e-08
30 46 50,000 .14e+02 .206e-08 .100e-08 .784e-08 .572e-08 .286e-08

(2.3)

k l n time (sec.) σk σk+1 δrel. max. δID δSVD

2 2 .48 · 102 .58e-04 .100e+01 .100e-07 .879e-07 .560e-07 .226e-07
2 2 .48 · 103 .42e-03 .100e+01 .100e-07 .310e-06 .213e-06 .358e-07
2 2 .48 · 104 .42e-02 .100e+01 .100e-07 .360e-05 .311e-05 .651e-07
2 2 .48 · 105 .54e-01 .100e+01 .100e-07 .579e-05 .449e-05 .343e-07
2 2 .48 · 106 .58e-00 .100e+01 .100e-07 .235e-04 .192e-04 .420e-07
2 2 .48 · 107 .58e+01 .100e+01 .100e-07 .380e-04 .273e-04 .181e-07

(2.4)

Tables 2.1–2.4 (See Section 5.)
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k l n time (sec.) σk σk+1 δrel. max. δID δSVD

10 10 102 .90e-03 .100e-06 .100e-06 .589e-05 .952e-06 .379e-06
10 10 103 .50e-02 .100e-06 .100e-06 .617e-04 .296e-05 .134e-05
10 10 104 .66e-01 .100e-06 .100e-06 .663e-03 .919e-05 .379e-05
10 10 105 .92e-00 .100e-06 .100e-06 .723e-02 .311e-04 .135e-04
10 10 106 .98e+01 .100e-06 .100e-06 .605e-01 .839e-04 .315e-04

(2.5)

Table 2.5 (See Section 5.)
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Figure 1 (See Section 5.)
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